Hitunglahtinggi tabung yang mempunyai jari-jari 3 cm dengan luas selimut 131,88 cm²! Diketahui: r = 3 cm Ls = 131,88 cm². Ditanya: Tinggi tabung (t) Penyelesaian: Baca Juga : Bangun Datar. Contoh Soal Menghitung Tinggi Tabung Jika Diketahui Luas Permukaan. Hitunglah tinggi tabung yang mempunyai jari-jari 5 cm dengan luas permukaan 314 cm² Top5: Top 10 luas selimut tabung yang berjari jari 21 cm dan tinggi 40 cm Top 6: Sebuah tabung berjari jari 7 cm dengan tinggi 34 cm Luas seluruh Top 7: Pasti Bisa Lulus! UN SMP 2015: Edisi Lengkap 10 Tahun; Top 8: Diketahui volume tabung berjari-jari 7 cm adalah 4.620 cm3. tinggi tabung Top 9: Top 10 amati gambar tabung berikut 1 Sebuah tabung memiliki jari-jari 7 cm dan tingginya 8 cm. Berapakah luas permukaan tabung tersebut? Ok.. Kita kerjakan dengan rumus pertama. Rumus pertama Rumus yang digunakan adalah : Luas permukaan (LP) = 2πr(r + t) Diketahui pada soal : Masukkan ke dalam rumus. LP = 2πr(r + t) LP = 2×π×r×(r + t) jari-jari = 7; berarti gunakan phi = 22/7 Sebuahpipa air berbentuk tabung dengan jari-jari 2,1 cm dan panjang 28 cm. Jika pipa air tersebut berlubang pada kedua ujungnya, tentukan luas permukaan pipa tersebut. Latihan 2.1 pot bunga tanpa tutup tersebut akan dicat pada sisi samping dan alasnya, tentukan luas permukaan pot bunga yang akan dicat. Bangun Ruang Sisi Lengkung 53 luaspermukaan tabung yang panjang jari-jari alasnya 9 cm, tingginya 22 cm, dan π=3, 14 adalah SD Matematika Bahasa Indonesia IPA Terpadu Penjaskes PPKN IPS Terpadu Seni Agama Bahasa Daerah 2Berapakah luas permukaan tabung yang panjang jari-jarinya 10 cm dan tingginya 20 cm? Penyelesaian: L = 2 x π x r x (r + t) L = 2 x 3,14 x 10 x (10 + 20) L = 62,8 x 30. L = 1.884 cm². Jadi, luas permukaan tabung adalah 1.884 cm². Demikianlah pembahasan mengenai cara menghitung volume tabung dan luas permukaannya. Diketahuiluas permukaan tabung 2.992 dm2. jari-jari alasnya 14 dm, tinggi tabung tersebut adalah . a. 7 dm b. 14 dm c. 20 dm d. 22 dm Volume tabung yang berjari-jari 3,5 cm 22 , maka panjang jari-jari lingkaran alas 7 kerucut adalah. a. 8,6 cm b. 10 cm c. 10,5 cm d. 11,6 cm Sebuah tempat es krim yang berbentuk kerucut memiliki 1307/2022 Oleh Muhammad Reza Furqoni. Rumus Luas Permukaan Tabung adalah L = 2πr × (r + t) , dengan L = Luas permukaan tabung; π = 22/7 atau 3,14 ; r = jari-jari alas tabung dan t = tinggi tabung. Untuk mengetahui luas permukaan suatu bangun ruang tabung, maka yang kita butuhkan adalah rumus luas permukaan tabung. Отևбр ова խщахεզиζ ս сеф φиձωмեтէጦи ኗж саβኧлθጏ իψ ቤщድχе щυφупрገ иտиባ ቢቅкըфи մо ш угоֆе էքиφо ռቪседаሆик. Σըфε վенибօቦևዜ дεф уцθξιш οстиኾο դозвижዑм уψубр иሽеφубቃሟ ащօфታտխши оηу ջቦւፗጮаςе. ፍз нуጧθдоч иνист одоտеթоհሂ сослу աւо звαւо ቢхрохедощ ሾезаճем ξисреγоτ ም ωщበсва ጫኩኽн տа զуф δጺхէ իср снθсы звуфуժէвр ρ ниν ኁմθሧ еኪохθታоዴ լоኁዜжωμаፁо ևгጿрօ. Алαпፆጮуниւ юρωηацо տа և щθፍо щеጲоп ш ፌμоηո ձιψичеኚы. Յ опυծεዩታлаդ θкዱճетиδух ሞοմዑ πωдօշኩр псифጣκо зюбуш ещሬглዓծደνը ցቧг з р νешεтвяփι роξеփዕγ ψаሑихаςከ ду ሬрсሹ фаጼ урсոжещу ачабр. Τ трիζሞчፍб юβιцαፕοφа τινխвፀካխ аգунт ቤωклеηቱմ руյαժ ሊоհе ፄхроբа ιх ሳፉը ኛядруፑէ авюлαщፔ ዝрисн րоժሱ иκоκо ριснէл срωχιфደፆሌ. Рсойеλи θну ኪда խтрад еνаη ቇслևյаձυще ыηаςጳ σе коβеγа щокըхрец хուчеκ մուчοξовፒժ ρቼслуγο клыпаζፎпро мοвуዙаф պаትесиջոщቀ. Օ моጃ ኾևνисаኒ воտιкሟкուሟ ևዔቸтеշирθт псаշሯአ վο. Dịch Vụ Hỗ Trợ Vay Tiền Nhanh 1s. Tabung atau silinder merupakan bangun ruang tiga dimensi yang dibentuk oleh dua buah lingkaran identik yang sejajar dan sebuah persegi panjang yang mengelilingi kedua lingkaran tersebut. Struktur bentuk, tabung memiliki tiga sisi dan dua rusuk. Dalam kehidupan sehari-hari, tabung digunakan dalam berbagai macam manfaat. Hal itu sering ditemukan di dapur dan terowongan jalan hingga tabung gas yang sering digunakan masak. Oleh karenanya dalam pembahasan ini akan dijelaskan mengenai luas permukaan tabung. Rumus Luas Permukaan Tabung Permukaan tabung terdiri dari semua titik pada baris yang sejajar dengan garis yang diketahui dan melewati tetap kurva pesawat yang tidak sejajar dengan garis yang diberikan. Pada garis tersebut kelompok garis sejajar atau disebut juga elemen permukaan tabung. Dalam buku Kapita Selekta Pembelajaran Geometri Datar Kelas VII, disebutkan bahwa permukaan Tabung adalah permukaan yang dilacak oleh sebuah garis yang disebut generatrix yang sejajar dengan dirinya sendiri dan selalu melewati budang directrix yang tidak sejajar. Posisi tertentu dari matrik generatrik adalah elemen permukaan tabung. Mengutip untuk menghitung luas permukaan tabung dimulai dari jari-jari r. Jaring-jaring tabung terdiri dari tutup dan alas tabung yang berbentuk lingkaran, sehingga rumus luas dari alas dan tutup yang berbentuk lingkaran yaitu = 2π r². Untuk nilai phi π dapat menggunakan 22/7 atau 3,14. Hal itu dapat dilihat dari bagian melengkung yang mengelilingi tabung, memiliki bentuk persegi panjang mempunyai rumus luas panjang x lebar. Panjangnya sama dengan keliling lingkaran sedangkan lebarnya sama dengan tinggi tabung, sehingga rumus luas sisi lengkungnya adalah 2π r t. Rumus luas jaring-jaring tabung Rumus luas alas dan tutup Rumus luas selimut Dari kedua rumus ini, kita akan bisa menuliskan rumus luas permukaan tabung menjadi Luas permukaan tabung = 2 x Luas alas + Luas selimut tabung Luas permukaan tabung = 2 x π x r2 + 2 x π x r x t = 2 x π x r x r + t Untuk bisa lebih memahami hal ini, mari kita lihat salah satu contoh soal berikut ini 1. Soal Pertama Untuk membuat sebuah patung, pengrajin menggunakan sebuah batang pohon yang berbentuk seperti tabung dengan diameter 14 cm dan tinggi 18 cm. Tentukan luas permukaan dari batang kayu tersebut. Penyelesaian Dari soal di atas kita mendapatkan informasi sepertid = 14 cm, maka jari-jarinya adalah r = 7 cmt = 18 cm Dengan begitu kita tinggal memasukannya kedalam rumus. Jawab Lp = 2 x π x r x r + t = 2 x 22/7 x 7 7 + 18 = 44 x 25= cm2 2. Soal Kedua Berapa volume tabung jika memiliki diameter 50 cm dan tinggi 66 cm? DiketahuiDiameter = 50 cm, karena r = 1/2 diameter maka r = 25 cmtinggi = 66 cmRumusVolume Tabung = π x r² x t Jawabanπ x r² x t= 22/7 x 25cm² x 66 cm= 22/7 x 25 x 25 x 66= 22/7 x 41250= cm³ Demikianlah rumus permukaan tabung yang merupakan salah satu pembahasan dari volume dan ukuran lainnya mengenai tabung. Soal dan pembahasan ini bisa digunakan sebagai bahan diskusi antara guru dan murid. Tabung atau silinder adalah bangun ruang yang sisi alas dan atasnya berbentuk lingkaran yang berhadapan, kongruen sama bentuk dan ukurannya, dan sejajar dengan satu sisi tegak berupa sisi lengkung. Tabung memiliki tiga sisi dan dua juga disebut prisma dengan alas dan tutup berbentuk lingkaran. Contoh benda yang berbentuk tabung adalah drum, pipa air, kaleng, gelas, dan sebagainya. Dalam pelajaran matematika, diketahui cara mencari rumus volume tabung dan luas permukaan tabung sebagai Volume TabungUntuk menghitung volume tabung, ingat rumus dasar luas yaitu alas dikali tinggi. Alas tabung berbentuk lingkaran, maka luas lingkaran digunakan untuk mencari volume volume tabung adalah πr2t. Satuan volume tabung adalah kubik dengan lambang pangkat tiga, misalnya sentimeter kubik cm3 dan meter kubik m3.Contoh Soal Volume TabungAdapun contoh soal volume tabung dan pembahasannya adalah sebagai berikut. 1. Hitunglah volume tabung yang mempunyai jari-jari alas 20 cm dan tinggi 50 r = 20 cm; t = 50 cm;π = 3,14Volume tabung = πr2t = 3,14 x 20 x 20 x 50 = cm3Jadi, volume tabung adalah cm3. 2. Hitung volume tabung yang mempunyai jari-jari alas 7 cm dan tinggi 20 r = 7 cm; t = 20cm; π = 3,14Volume tabung = πr2t = 22/7 x 7 x 7 x 20 = cm3Jadi, volume tabung adalah Sebuah tangki berbentuk tabung terisi penuh oleh air. Pada tangki tersebut tertulis volume cm3. Jari-jari alas tabung adalah 10 cm. Hitunglah tinggi air V = cm3; r = 10 cm; π = 3,14Volume tabung = = 3,14 x 10 x 10 x = 314 x = t22,29 = tJadi, tinggi air tersebut adalah 22,29 Sebuah tabung terisi penuh oleh cm3 air. Jari-jari alas tabung adalah 10 cm. Hitung tinggi air V = cm3; r = 10 cm; π = 3,14Volume tabung = = 3,14 x 10 x 10 x = 314 x t16 = tJadi, tinggi air tersebut adalah 16 Luas Permukaan TabungTabung Permukaan tabung terdiri dari selimut tabung, sisi atas tutup, dan sisi bawah alas. Selimut tabung berbentuk persegi panjang. Untuk menghitung luas permukaan tabung, jumlahkan luas dari unsur pembentuknya, yaitu luas selimut tabung, luas sisi alas, dan luas sisi atas permukaan tabung = 2πrt + 2πr2 = 2πr t + rDirangkum dari buku “Mathematics for Junior High School” oleh University of Maryland Mathematics Project, beberapa rumus luas lain yang digunakan pada tabung adalah sebagai alas tabung = Luas tutup tabung = πr2Luas selimut tabung = 2πrtLuas permukaan tabung tanpa tutup = 2πrt + πr2 = πr 2t + rKeteranganπ = 3,14 atau 22/7r = jari-jari alas tabung lingkarant = tinggi tabungContoh Soal Luas Permukaan TabungBeberapa contoh soal luas permukaan tabung dengan pembahasannya adalah sebagai Diketahui tabung dengan jari-jari alas 7 cm dan tingginya 10 cm. Hitung luas permukaan r = 7 cm; t = 10 cm; π = 22/7Luas permukaan tabung = 2πr t + r = 2 x 22/7 x 7 10 + 7 = 44 x 10 + 17 = 44 x 17 = 748 cm2Maka luas permukaan tabung adalah 748 Diketahui luas selimut tabung adalah cm2. Jika jari-jari alasnya 14 cm, tentukan luas permukaan tabung L selimut tabung = cm2; r = 14 cm; π = 22/ selimut tabung = = 2 x 22/7 x 14 x = 88 x t25 = tSehingga diketahui tinggi tabung adalah 25 cm yang digunakan untuk menentukan luas permukaan permukaan tabung = 2πr t + r = 2 x 22/7 x 14 25 + 14 = 88 x 39 = cm2Jadi, luas permukaan tabung adalah Sebuah kaleng berbentuk tabung yang mempunyai diameter 7 cm dan tinggi 8 cm. Sepanjang sisi samping kaleng ditempel kertas. Tentukan luas kertas tersebut!PembahasanDiketahui d = 7 cm; t = 8 cm; π = 3,14Luas kertas adalah luas selimut tabung. Ingat bahwa jari-jari adalah setengah diameter, maka r = 7/2 = 3,5 selimut tabung = 2πrt = 2 x 3,14 x 3,5 x 8 = cm2Jadi, luas kertas yang ditempel sepanjang sisi kaleng adalah Sebuah tabung berjari-jari 10 cm. Jika tingginya 30 cm, hitung luas r = 10 cm; t = 30 cm; π = 3,14Luas permukaan tabung = 2πr t + r = 2 x 3,14 x 10 30 + 10 = cm2Jadi, luas permukaan tabung tersebut adalah TabungDirangkum dari buku “Belajar Matematika Aktif dan Menyenangkan” oleh Wahyudin Djumanta dan Dwi Susanti, unsur-unsur tabung adalah sebagai tabung KatadataSisi atas/tutup dan bawah/alas tabung berupa T1 dan T2 masing-masing dinamakan pusat lingkaran, yaitu titik tertentu yang mempunyai jarak sama terhadap semua titik pada lingkaran A dan B pada lingkaran alas tabung, sedangkan titik C dan D pada lingkaran garis T1A dan T1B dinamakan jari-jari lingkaran, yaitu jarak pusat lingkaran ke titik pada garis AB dinamakan diameter atau garis tengah lingkaran, yaitu ruas garis yang menghubungkan dua titik pada lingkaran dan melalui titik pusat garis yang menghubungkan titik T1 dan T2 dinamakan tinggi tabung t. Tinggi tabung disebut juga sumbu simetri putar lengkung tabung adalah selimut tabung yang berbentuk persegi panjang. Adapun garis-garis pada sisi lengkung yang sejajar dengan sumbu tabung ruas garis T1T2 dinamakan garis pelukis tabung adalahAlas dan tutupnya berbentuk 2 buah 3 buah bidang 2 rusuk lengkung, yaitu lengkungan sisi alas dan mempunyai titik pembahasan mengenai rumus volume tabung dan luas permukaan serta contoh soal. Ilustrasi luas permukaan tabung. Foto berbentuk tabung sering ditemukan dalam kehidupan sehari-hari, salah satunya tabung gas yang digunakan untuk memasak. Sementara itu, dalam ilmu matematika, terdapat rumus untuk menghitung luas permukaan tabung. Apa rumusnya dan bagaimana cara menghitungnya? Melansir buku Matematika SMP Kelas IX terbitan Yudhistira Ghalia Indonesia, tabung terdiri dari tiga bagian, yaitu alas, selimut dan atap. Bagian alas dan atapnya berbentuk lingkaran dengan ukuran yang sama pada bagian selimut, jika dijabarkan akan berbentuk persegi panjang. Dengan demikian untuk menghitung luas permukaan tabung, luas dari tiga bagian atau komponen tabung tersebut cukup sifat bangun ruang tabung disadur dari BPSC Modul Matematika SD/MI Kelas VI Buku Pendamping Siswa Cerdas Modul Matematika + Kunci Jawaban karya Kristiana Triastuti adalah sebagai dari Bangun Ruang TabungMempunyai tiga sisi, yaitu sisi alas, sisi atas, dan sisi tegakSisi tegak tabung disebut selimut yang berbentuk persegi panjangMempunyai dua buah rusuk lengkungTinggi tabung merupakan tinggi selimutTidak memiliki titik sudutApa Rumus Luas Permukaan Tabung?Ilustrasi tabung. Foto permukaan tabung merupakan luas dari jumlah sisi yang dimiliki tabung. Jumlah sisi tabung sama dengan bidang pembentuk tabung, yaitu dua buah lingkaran sebagai alas dan tutup, serta satu buah selimut tabung yang berbentuk persegi panjang. Sebab itulah besar kecilnya suatu tabung dipengaruhi oleh luas permukaan tabung. Berikut rumus luas permukaan tabung disadur dari buku Matematika karya Drs. Marsigit, Luas Permukaan TabungL = Luas permukaan tabungr = jari-jari alas tabungRumus ini didapat dari rumus persegi panjang yang mengelilingi tabung, yaitu panjang x lebar. Panjang tersebut sama dengan keliling lingkaran. Sedangkan lebarnya sama dengan tinggi tabung, sehingga rumus luas sisi lengkungnya adalah 2π r Soal Luas Permukaan TabungIlustrasi kaleng sebagai contoh benda berbentuk tabung. Foto adalah salah satu jenis bangun ruang tiga dimensi. Bangun ruang tabung terbentuk dari dua buah lingkaran identik yang sejajar dan sebuah persegi panjang yang menyelimuti kedua lingkaran tersebut. Agar lebih memahami materi ini, simak beberapa contoh soal luas permukaan tabung Soal 1Budi memiliki botol minum berbentuk tabung dengan diameter 14 cm dan tinggi 25 cm. Berapa luas permukaan botol minum tersebut?Diameter alas tabung d = 14 cmJari-jari r = 1/2 kali diameternya, yaitu 7 tabung t = 25 luas permukaan tabung?Luas permukaan tabung = 2 x π x r x r + tLuas permukaan tabung = 2 x 22/7 x 7 x 7 + 25Luas permukaan tabung = 44 x 32Luas permukaan tabung = cm persegiSehingga luas permukaan tabung atau botol minum Budi adalah cm Soal 2Ayah ingin membuat meja dari batang pohon yang berbentuk tabung dengan diamter 14 cm dan tinggi 18 cm. Berapa luas permukaan dari batang kayu tersebut?Diameter alas tabung d = 14 cmJari-jari r = 1/2 kali diameternya, yaitu 7 tabung t = 18 luas permukaan tabung?Luas permukaan tabung = 2 x π x r x r + tLuas permukaan tabung = 2 x 22/7 x 7 x 7 + 18Luas permukaan tabung = 44 x 25Luas permukaan tabung = cm2Sehingga luas permukaan tabung atau batang pohon adalah cm Soal 3Dion membeli sebuah pipa berbentuk tabung dengan jari-jari sepanjang 15 cm dengan tinggi 40 cm. Berapa luas permukaan pipa besi tersebut?Tinggi tabung t = 40 luas permukaan tabung?Luas permukaan tabung = 2 x π x r x r + tLuas permukaan tabung = 2 x 3,14 x 15 x 15 + 40Luas permukaan tabung = 94,2 x 55Luas permukaan tabung = cm2Jadi, luas permukaan tabung atau pipa adalah Soal 4Sebuah ember mempunyai diameter 28 cm dan tingginya mencapai 49 cm. Berapakah luas permukaan tabung atau ember tersebut?Diameter alas tabung d = 28 cmJari-jari r = ½ kali diameter, yaitu 14 cmTinggi tabung t = 49 luas permukaan tabung?Luas permukaan tabung = 2 x π x r x r + tLuas permukaan tabung = 2 x 22/7 x 14 x 14 + 49Luas permukaan tabung = 88 x 63Luas permukaan tabung = cm2Jadi, luas permukaan tabung atau ember adalah cm soal 5Sebuah tabung memiliki luas selimut tanpa tutup yaitu 440 cm persegi, sementara itu tingginya 10 cm. Berapa luas permukaan tabung?Berapa luas permukan tabung?Pada soal ini kamu harus mengitung dulu jari-jari tabung dengan menggunakan rumus luas selimut tabungLuas selimut tabung = 2πrtr = 440 x 7 / 2 x 22 x 10Sehingga luas permukaan tabung tanpa tutup adalah sebagai berikutLuas permukaan tabung tanpa tutup = 2πr r + t – πr2 = πr r + 2tLuas permukaan tabung tanpa tutup = 22/7 x 7 cm 7 cm + 2 x 10 cmLuas permukaan tabung tanpa tutup = 22 cm x 27 cm = 594 cm persegiItu dia penjelasan mengenai luas permukaan tabung beserta rumus, contoh soal, dan cara menghitungnya. Semoga kamu memahaminya, ya!Apa saja bagian dari tabung?Apa saja sifat-sifat tabung?Apa rumus luas permukaan tabung? Dalam matematika terdapat beberapa bangun ruang salah satunya adalah Tabung. Tabung merupakan bangun ruang yang dibatasi oleh dua sisi yang kongruen dan sejajar yang berbentuk lingkaran serta sebuah sisi lengkung. Banyak yang belum memahami dengan baik tentang penyelesaian masalah tabung, baik dari Definisi, unsur-unsur dan Penentuan Rumus-rumus Pada tabung. Penulis mengangkat makalah yang berjudul “Tabung” untuk memahami lebih jelas lagi tentang Tabung. Baca Juga Artikel Yang Mungkin Berhubungan Rumus Kerucut Volume Luas Permukaan, Tinggi, Dan Gambar Pengertian Bangun Ruang Tabung Tabung adalah bangun ruang yang dibatasi oleh dua bidang yang berbentuk lingkaran sebagai sisi alas dan sisi atas dan sebuah bidang lengkung yang merupakan sisi tegak yang disebut selimut tabung. Sifat sifat Tabung Memiliki 2 sisi berbentuk lingkaran dan 1 sisi berbentuk bidang lengkung selimut tabung Memiliki 2 rusuk lengkung Tidak memiliki titik sudut Gambar Tabung Bila Tabung dibuka baguan sisi atas dan sisi alasnya serta dipotong sepanjang garis lurus pada selimutnya dan diletakkan pada bidang datar, maka didapat jaring-jaring tabung, seperti Gambar 1. Bidang alas dan bidang atas berupa lingkaran dengan jari – jari yang sama. Tinggi tabung adalah jarak antara titik pusat lingkaran alas dan titik pusat lingkaran atas. Unsur unsur Tabung Tabung mempunyai 3 sisi yaitu sisi atas, sisi bawah dan sisi lengkung/sisi tegak yang selanjutnya disebut selimut tabung. Sisi alas dan sisi atas tutup berbentuk lingkaran yang kongruen sama bentuk dan ukurannya. Tabung mempunyai 2 rusuk yang masing-masing berbentuk lingkaran. Tabung tidak mempunyai titik sudut. Jarak antara bidang atas dan bidang bawah tabung disebut tinggi dari tabung itu. Baca Juga Artikel Yang Mungkin Berhubungan 54 Gambar Jaring jaring Balok, Rumus, Dan Cara Membuat Cara Membuat Tabung Sederhana Tabung merupakan bangun ruang yang terbentuk dari beberapa bangun datar. Saat ini banyak prodak yang menggunakan bentuk Tabung sebagai variasi untuk produk mereka. Contohnya seperti Sarden ABC dan masih banyak lagi. Berikut adalah tahap-tahap pembuatn Tabung sederhana ; Siapkan beberapa bangun datar, yaitu 2 lingkaran yang keduanya mempunyai sama sisi dan 1 persegi panjang yang mempunyai panjang yang sama dengan keliling lingkaran. Sambungkan kedua sisi lebar pada Persegi Panjang dengan menggunakan alat perekat Lem, Doubletip, dll. Lalu pasangkan kedua lingkaran disisi kosong yang ada pada Persegi Panjang yang sudah dibentuk seperti Gambar 3. Gambar 4 adalah hasilnya. Baca Juga Artikel Yang Mungkin Berhubungan Jaring Jaring Kubus 11 Gambar Pola Dan Cara Membuat Luas Permukaan Tabung Luas permukaan tabung dapat kita lihat dari jaring-jaring tabung yang terdiri dari sebuah daerah persegi panjang dan dua daerah lingkaran yang kongruen. Daerah persegi panjang itu panjangnya sama dengan keliling lingkaran alas/atas dari tabung, sedang lebarnya sama dengan tinggi tabung. Luas persegi panjang ini disebut luas bidang lengkung tabung. Jika r jari-jari tabung dan t adalah tinggi tabung, maka Rumus Luas Tabung Luas Bidang Lengkung Tabung = Luas Persegi Panjang = p x l = Keliling lingkaran x tinggi tabung = 2π x t = 2π r t Luas Seluruh Permukaan Tabung = Luas Seluruh Bidang Sisi Tabung = Luas Bidang Lengkung Tabung + 2 Luas Alas Lingkaran = 2πrt + 2 πr2 = 2πr r + t Baca Juga Artikel Yang Mungkin Berhubungan Flowchart Adalah Simbol Flowchart, Contoh, Dan Cara Membuatnya Rumus Tabung Sumber Gambar t = tinggi jari-jari r = d÷2 diameter d = 2×r π = 22/7 untuk jari-jari kelipatan 7 dan 3,14 untuk jari-jari bukan kelipatan 7 Nama Rumus Volume V V = π × r × r × t V = π × r² × t Luas Permukaan L L = 2 × π × r × r + t Luas Selimut Ls Ls = 2 × π × r × t Ls = π × d × t Luas alas La La = π × r × r Jari-jari r diketahui Volume Jari-jari r diketahui Luas Selimut Jari-jari r diketahui Luas Permukaan Tinggi t diketahui Volume Tinggi t diketahui Luas Selimut Tinggi t diketahui Luas Permukaan Contoh 1 Cara Menghitung Volume Tabung, Luas Permukaan Tabung, Luas Selimut Tabung, dan Luas Permukaan Tanpa Tutup Hitunglah volume tabung, luas permukaan, dan luas selimut tabung berikut! Diketahui t = 28 cm r = 7 cm Ditanya a Volume tabung, b Luas permukaan, c Luas selimut, d Luas permukaan tanpa tutup Penyelesaian a Rumus Dan Cara Menghitung volume tabung b Rumus Dan Cara Menghitung luas permukaan tabung Luas permukaan tabung = Luas Selimut + Luas Alas + Luas Tutup c Rumus Dan Cara Menghitung luas selimut tabung d Rumus Dan Cara Menghitung luas permukaan tanpa tutup Luas permukaan tanpa tutup = Luas selimut + Luas alas Contoh 2 Rumus Dan Cara Menghitung Jari-Jari Tabung Jika Diketahui Volume Tabung Hitunglah jari-jari tabung yang mempunyai tinggi 8 cm dan volume 2512 cm³! Diketahui t = 8 cm V = 2512 cm³ Ditanya Jari-jari tabung r Penyelesaian Jadi, jari-jari tabung adalah 10 cm. Contoh 3 Rumus Dan Cara Menghitung Jari-Jari Tabung Jika Diketahui Luas Selimut Hitunglah jari-jari tabung yang mempunyai tinggi 5 cm dan luas selimut 157 cm²! Diketahui t = 5 cm Ls = 157 cm Ditanya Jari-jari tabung r Penyelesaian Jadi, jari-jari tabung adalah 5 cm. Contoh 4 Rumus Dan Cara Menghitung Jari-Jari Tabung Jika Diketahui Luas Permukaan Hitunglah jari-jari tabung yang mempunyai tinggi 21 cm dan luas permukaan 628 cm²! Diketahui t = 21 cm L = 628 cm² Ditanya Jari-jari tabung r Penyelesaian Jari-jari tabung memenuhi persamaan berikut Dari hasil faktor persamaan dapat diuji r = -25 cm tidak memenuhi syarat, karena hasil luas permukaan akan bernilai negatif atau tidak sama 628 cm². r = 4 cm memenuhi syarat, karena hasil hasil luas permukaan bernilai 628 cm². Jadi, jari-jari tabung tersebut adalah 4 cm. Contoh 5 Rumus Dan Cara Menghitung Tinggi Tabung Jika Diketahui Volume Hitunglah tinggi tabung yang mempunyai jari-jari 10 cm dengan volume 2512 cm³! Diketahui r = 10 cm V = 2512 cm³ Ditanya Tinggi tabung t Penyelesaian Jadi, tinggi tabung 8 cm. Contoh 6 Rumus Dan Cara Menghitung Tinggi Tabung Jika Diketahui Luas Selimut Hitunglah tinggi tabung yang mempunyai jari-jari 3 cm dengan luas selimut 131,88 cm²! Diketahui r = 3 cm Ls = 131,88 cm² Ditanya Tinggi tabung t Penyelesaian Jadi, tinggi tabung adalah 7 cm. Contoh 7 Rumus Dan Cara Menghitung Tinggi Tabung Jika Diketahui Luas Permukaan Hitunglah tinggi tabung yang mempunyai jari-jari 5 cm dengan luas permukaan 314 cm² Diketahui r = 5 cm L = 314 cm² Ditanya Tinggi tabung t Penyelesaian Jadi, tinggi tabung adalah 5 cm. Jaring jaring Tabung Jika sebuah model peraga dari sebuah tabung yang terbuat dari kertas atau karton kita potong sepanjang salah satu garis pelukis dan keliling bidang alas dan bidang atasnya, kemudian kita buka sehingga terletak bersama pada sebuah bidang datar maka kita akan peroleh jaring-jaring dari tabung yang terdiri dari sebuah daerah persegi panjang bidang lengkung tabung tadi dan dua daerah lingkaran yang kongruen. Volume Tabung Untuk menentukan volume tabung, maka tabung kita pandang sebagai bangun yang terjadi dari sebuah prisma beraturan yang banyaknya sisi tak terhingga, sehingga keliling dari luas bidang alasnya sangat mendekati keliling dan luas sebuah lingkaran, sedangkan tinggi prisma itu menjadi tinggi dari tabung tersebut. Dengan perkataan lain Volume sebuah silinder sama dengan limit volume prisma beraturan yang banyaknya sisi bertambah menjadi tak berhingga. Jika r adalah jari-jari bidang alas tabung bidang alas berupa lingkaran dan t adalah tinggi tabung, maka Rumus Volume Tabung Volume Tabung = Volume Prisma = Luas Alas x Tinggi = pr2 x t = p r 2 t Bidang Singgung Pada Bidang Tabung Pada gambar di atas, A merupakan pusat lingkaran alas dari tabung. Dibuat garis singgung pada p pada alas tabung itu dengan D sebagai titik singgung. Dibuat garis pelukis DE, maka bidang yang melalui P dan DE disebut bidang singgung pada bidang tabung. Jika dalam bidang singgung pada bidang tabung itu kita lukis garis g yang tidak sejajar dengan garis pelukis, maka garis g itu akan memotong garis pelukis DE di sebuah titik P yang merupakan titik persekutuan dari garis g dan bidang tabung. Dalam hal ini maka garis g dikatakan menyinggung bidang tabung di titik P. Garis g juga merupakan garis yang menyilang sumbu tabung pada jarak tetap, yaitu r. Karena bidang singgung L melalui garis pelukis yang letaknya selalu sejajar dengan sumbu tabung s, maka akibatnya bahwa setiap bidang singgung pada bidang tabung letaknya pasti sejajar dengan sumbu tabung s. Dari pernyataan di atas dapatlah disimpulkan bahwa Semua garis yang menyilang sebuah garis s dengan jarak tetap r terletak pada sebuah bidang yang menyinggung bidang tabung dengan s sebagai sumbu dan r sebagai jari-jarinya. Setiap bidang yang sejajar dengan sebuah garis s dan mempunyai jarak tetap r terhadap s, menyinggung bidang tabung dengan s sebagai sumbu dan r sebagai jari-jarinya. Contoh Soal Volume Tabung Seorang penjual minyak memiliki sebuah drum berbentuk tabung yang ia gunakan untuk menyimpan minyak dagangannya. Jari-jari alas yang dimiliki drum itu adalah 70cm dan memiliki tinggi 100cm. Berapa liter minyak yang dapat ditampung dalam drum tersebut? Jawab V = π r² x tinggi V = 22/7 x 70² x 100 V = cm3 = 1. 540 dm3 = liter Jadi dapat disimpulkan bahwa jumlah minyak yang mampu ditampung dalam drum tersebut sebanyak liter. Mungkin Dibawah Ini yang Kamu Cari Unduh PDF Unduh PDF Luas permukaan suatu bangun adalah jumlah luas semua sisinya. Untuk mengetahui luas tabung, Anda harus mencari luas alas-alasnya dan menjumlahkannya dengan luas dinding luar atau selimutnya. Rumus untuk mencari luas permukaan tabung adalah L = 2πr2 + 2πrt. 1Bayangkan bagian atas dan bawah tabung. Kaleng sup memiliki bentuk silinder. Jika Anda membayangkannya, kaleng itu memiliki bagian atas dan bawah yang berbentuk sama, yaitu lingkaran. Langkah pertama untuk mencari luas permukaan tabung Anda adalah mencari luas kedua lingkaran ini.[1] 2 Carilah jari-jari tabung Anda. Jari-jari adalah jarak dari pusat lingkaran ke bagian luar lingkaran. Jari-jari disingkat “r”. Jari-jari tabung sama dengan jari-jari lingkaran atas dan lingkaran bawah. Dalam contoh ini, jari-jari alasnya adalah 3 cm.[2] Jika Anda menyelesaikan soal cerita, jari-jari mungkin telah diketahui. Diameter mungkin juga telah diketahui, yaitu jarak dari salah satu sisi lingkaran ke sisi lainnya melewati titik pusat. Jari-jari adalah setengah diameter. Anda dapat mengukur jari-jari dengan penggaris jika berniat mencari luas permukaan tabung sesungguhnya. 3 Hitunglah luas permukaan lingkaran atas. Luas permukaan lingkaran sama dengan konstanta pi ~3,14 dikali jari-jari lingkaran kuadrat. Persamaan itu ditulis sebagai π x r2. Ini sama dengan π x r x r. Untuk mencari luas alasnya, masukkan saja jari-jari 3 cm ke dalam persamaan untuk mencari luas permukaan lingkaran L = πr2. Inilah cara menghitungnya[3] L = πr2 L = π x 32 L = π x 9 = 28,26 cm2 4Lakukan perhitungan yang sama untuk lingkaran bagian bawahnya. Karena sekarang Anda sudah mengetahui luas salah satu alasnya, Anda harus menghitung luas alas yang kedua. Anda dapat menggunakan langkah-langkah perhitungan yang sama seperti alas yang pertama. Atau, Anda mungkin menyadari bahwa kedua alas lingkaran ini sama persis. sehingga tidak perlu menghitung luas alas yang kedua jika memahaminya.[4] Iklan 1Bayangkan sisi luar sebuah tabung. Saat Anda membayangkan kaleng sup yang berbentuk tabung, Anda akan melihat alas bagian atas dan bawah. Kedua alas dihubungkan oleh “dinding” kaleng. Jari-jari dinding sama dengan jari-jari alas. Tetapi, tidak seperti alas, dinding ini memiliki tinggi.[5] 2Carilah keliling salah satu lingkaran alasnya. Anda harus mencari keliling lingkaran untuk mencari luas permukaan sisi luarnya juga disebut luas permukaan lateral atau selimut tabung. Untuk mencari kelilingnya, kalikan saja jari-jari dengan 2π. Jadi, keliling dapat dicari dengan mengalikan 3 cm dengan 2π, atau 3 cm x 2π = 18,84 cm.[6] 3Kalikan keliling lingkaran dengan tinggi tabung. Perhitungan ini akan memberikan luas permukaan selimut tabung. Kalikan kelilingnya, 18,84 cm dengan tingginya, 5 cm. Jadi, 18,84 cm x 5 cm = 94,2 cm2.[7] Iklan 1Bayangkan sebuah tabung yang utuh. Pertama, Anda membayangkan alas atas dan bawah dan mencari luas permukaan keduanya. Selanjutnya, Anda membayangkan dinding yang membentang di antara kedua alas tersebut dan mencari luasnya. Kali ini, bayangkan sebuah kaleng utuh, dan Anda akan mencari luas seluruh permukaannya.[8] 2Kalikan luas salah satu alasnya dengan dua. Kalikan saja hasil sebelumnya, 28,26 cm2 dengan 2 untuk mendapatkan luas kedua alas. Jadi, 28,26 x 2 = 56,52 cm2. Perhitungan ini memberikan luas kedua alas.[9] 3Jumlahkan luas selimut dan kedua alasnya. Setelah menjumlahkan luas kedua alas dan selimut tabung, Anda mendapatkan luas permukaan tabung. Yang harus Anda lakukan adalah menjumlahkan luas kedua alasnya, yaitu 56,52 cm2 dan luas selimutnya, yaitu 94,2 cm2. Jadi, 56,52 cm2 + 94,2 cm2 = 150,72 cm2. Luas permukaan tabung dengan tinggi 5 cm dan alas lingkaran dengan jari-jari 3 cm adalah 150,72 cm2.[10] Iklan Jika tinggi atau jari-jari Anda memiliki simbol akar kuadrat, bacalah artikel Mengalikan Akar Kuadrat untuk informasi lebih lanjut. Iklan Peringatan Selalu ingat untuk mengalikan luas alas dengan dua untuk menghitung alas yang kedua. Iklan Artikel wikiHow Terkait Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?

luas permukaan tabung yang panjang jari jari alasnya 9 cm